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Abstract

Structures vibrate, and sometimes with frequencies that are not wanted. Structures are commonly required to be

resonance-free within certain frequency ranges, and if they do have undesirable frequencies, these can be moved by

changing the structure sti�ness, or mass, or both. A mixed sti�ness/¯exibility formulation of the vibration problem

presents alternative condensations to sti�ness and ¯exibility eigenvalue equations for an altered structure. The ¯exibility

form gives more compact equations, and this is developed to solve a parent problem where a structure has a single

frequency in a nominated band, to be removed by adjusting the sti�ness of a brace stressing the structure in a single

way. Interestingly, if the original eigenvalue problem has a Sturm sequence, the frequency exclusion problem can be

solved without determining any frequency or mode of the original structure. Ó 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Structures have natural frequencies of vibration, and some of them may be undesirable. Any unwanted
frequencies of an existing structure were probably eliminated in the original design, but we may be con-
cerned with a proposed structure, or we could be looking at an existing structure that has been changed in
some way, either intentionally or through damage, and now has frequencies that are not wanted.

Sti�ness equations for free vibration of a structure have the eigenvalue form

K�

�
ÿ x2M�

�
u� � 0�; �1�

where K� and M� are the structure sti�ness and mass matrices, respectively. Solutions are associated pairs
(x; u�) which are a vibration frequency and vibration mode respectively.

Changes to the sti�ness, here called bracing, or to the mass, will change these solutions. This paper
concentrates on changes to the sti�ness, but as Eq. (1) has the equivalent form,
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M�

�
ÿ 1=x2K�

�
u� � 0�; �1a�

changes to the mass are fundamentally the same, although a couple of di�erences in detail are noted in the
closing remarks.

As an example of bracing, consider the cantilever beam, modelled with two ®nite elements, shown in Fig.
1a. The model has four freedoms, and gives vibration frequencies of 3.518, 22.22, 75.16 and 218.1 (these are
values of the dimensionless frequency xL2

����������
q=EI

p
, where L is the span, EI, the ¯exural rigidity, and q, the

mass per unit length).
When braced, here by a simple spring supporting the free end, all frequencies are raised by an amount

depending on the sti�ness of the brace. The relationships between the vibration frequencies and brace
sti�ness are bracing curves, and the curves for the ®rst two modes of the cantilever, braced at the tip, are
shown in Fig. 1b. The ®gure is plotted in axes of k and x, rather than in the eigenvalues k and x2. This has
been done for compactness, and is continued throughout the paper. Nothing essential is lost in this.

If we wished to have this structure with no frequencies in the range of 14±24, then from an inspection of the
solid rectangle of Fig. 1b, this is realised with any spring with sti�ness in the range of the rectangle, 18±152
(these are values of the dimensionless parameter kL3=EI , and how these are calculated directly will be shown
later). Similarly, the dashed rectangle shows that all frequencies between 20 and 30 are removed if the spring
sti�ness exceeds 76. Bracing with negative sti�ness makes no physical sense in this structure, but in others it
may simply be reducing the sti�ness of an existing element. There is no theoretical reason to discount negative
bracing, and a brace with sti�ness less thanÿ29 will equally exclude all frequencies in the same range of 20±30.
These rectangles, bounded by the relevant frequency range, are completely free of bracing curves.

No tip brace can exclude all frequencies in the range of 10±30, and we cannot draw a rectangle, bounded
by frequencies of 10 and 30 and free of curves although it will be shown that we can construct a brace to
produce this result.

Bracing to clear frequency bands is equivalent to locating open spaces on the bracing diagram, or if the
form of the brace is unspeci®ed, to constructing a bracing diagram with the open space in the right place.

2. Formulation

Free vibration equations of the original structure are

K�

�
ÿ x2M�

�
u� � 0�:

Fig. 1. Braced cantilever: (a) model and (b) bracing curves.
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Bracing will add sti�ness to some displacements u�b, related to the structure displacements by

u�b � G�u�; �2�

where G� gives the geometric connections of the brace.
The bracing will have forces N� b in the vibration mode, related to the braced displacements by

u�b � F�N� b: �3�

Contragredience gives these forces in the original coordinates as

P�b � G�
TN� b �4�

and with the total of the internal forces applied to the nodes now K� ÿ x2M�

� �
u� � P�b, the equilibrium

equations of the braced structure are

K�

�
ÿ x2M�

�
u� �G�

TN� b � 0�: �5�

Eqs. (2), (3) and (5) combine to give

K� ÿ x2M� G�
T

G� ÿF�

" #
u�

N� b

" #
� 0�: �6�

Eq. (6) describes the new, braced structure in a mixed formulation. The original structure is included
through the original, unaltered, sti�ness matrix occupying the leading diagonal submatrix position, and the
bracing is included through a ¯exibility relation augmenting the original.

Static condensation to u� eliminates N� b and gives the assembled sti�ness of the braced structure as

K�

�
�G�

TF�
ÿ1G� ÿ x2M�

�
u� � 0� �7�

(Williams and Anderson, 1983) which is a new eigenvalue problem with the same size as the original.
Alternatively, condensation to N� b eliminates u�, giving

G� K�

��
ÿ x2M�

�ÿ1

G�
T � F�

�
N� b � 0�; �8�

which is also an eigenvalue problem, but with the size of N� b, the number of independent stressing modes of
the brace, here called the rank of the brace (it is the same as the rank of the brace sti�ness matrix G�

TF�
ÿ1G� ).

This is likely to be a much smaller problem than that of Eq. (7).
Each form has its applications. Returning to the example of Fig. 1, if we were to ask, Ôwhat are the

frequencies of a cantilever when braced at the tip with a sti�ness of 100?Õ we know F�
ÿ1 (1 0 0) and we know G�

(its a brace of the tip de¯ection, freedom 1), and Eq. (7) will give the required frequencies. Diagrammati-
cally, we are drawing a vertical line at the k � 100 mark of Fig. 1b, and searching along it for solutions. It is
not di�erent from Eq. (1), which searches the k � 0 line.

Had we asked, Ôwhat sti�ness of tip brace will give a frequency of 30?Õ Eq. (8) is more attractive than Eq.
(7) because it is likely to be much smaller. This draws a horizontal line at x � 30 and scans it for solutions.

A more open and interesting question is, ÔIf the second natural frequency is to be 150, what rank of brace
is required, and how should it be connected?Õ
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2.1. Rank 1 bracing

Rank 1 bracing is the simplest. With a single stress mode, N� b becomes a scalar Nb, and F� similarly
becomes f. The connections G� are a vector g

�
, and Eq. (8) is now

g
�

K��x�
ÿ1

g
�

T

�
� f

�
Nb � 0; �8a�

where K��x� has been written for K� ÿ x2M�

� �
. This single eigenvalue equation has the solution

f � 1=k � ÿg
�

K��x�
ÿ1

g
�

T: �9�

An added support is a typical example of a rank 1 brace, as is the simple spring or truss member added to

the cantilever of Fig. 1. Freedom 1 is the only one braced here, and the connection for this is g
�
�

1 0 0 0� �. To calculate the spring sti�ness which gives a frequency of 30, K� (30) is formed and k � 75:8
is calculated from Eq. (9).

Brandon (1984) has considered the analysis of altered structures, concentrating on properties of the
receptance (¯exibility) matrix after the changes. The above analysis adds nothing to his results, except,
perhaps, a di�erent perspective.

While rank 1 bracing is the simplest, it is also completely general in that bracing of any rank r can be
written as r independently applied rank 1 braces, as noted by Brandon. The equations take this form if we
calculate any diagonal factorisation of F� (Gauss or Choleski would do), and use it to transform the stresses
into a natural system.

2.2. Shapes of the bracing curves

Except when x is a natural frequency xi, K��x� is invertible and Eq. (9) has one solution only. Any
horizontal line drawn in Fig. 1b will intersect exactly one bracing curve, with a limiting exception when
f � 0, which is k � �1. The ®gure is divided into horizontal layers, each containing a single bracing curve,
which must be monotonic increasing, as shown in the appendix. The curves asymptote to those values of x
which give f � 0, and are ÔSÕ shaped in between (except for the lowest and uppermost curves, which have
only a single asymptote).

The case of a singular K��xi� is discussed in the appendix, where it is shown that nothing essential in the
above description is changed.

This graph structure, with each curve in its own horizontal region, shown in Fig. 2a, is a property of rank
1 bracing. For rank r, Eq. (8) will have r solutions, and a horizontal line will cut r bracing curves. These ÔSÕ
shaped bracing curves are the Ôauxiliary functionÕ used by Weissenburger (1968) and Brandon (1984, 1990),
although these authors use a ¯exibility axis where sti�ness is used here. A hybrid view gives an interesting
alterative interpretation. Plot the curves using sti�nesses in the range of ÿ1 to �1 (Fig. 3a), with a similar
plot for ¯exibilities ranging from �1 to ÿ1 (Fig. 3b). The limits, of course, are the same, and the two plots
can be joined smoothly, 1 at either boundary (Fig. 3c). If the joined plot is wrapped into a cylinder the
bracing curves now appear as the single helix of Fig. 3d. The asymptotes in the sti�ness plot are the in-
tercepts of the Weissenburger)Brandon ¯exibility plot, and equally, the asymptotes of the ¯exibility plot
are the intercepts in the sti�ness plot, which are the natural frequencies.

1 The function will not be analytic at the join, but it will be C1 continuous in all cases, except for rare circumstances when the

continuity is reduced to C0. Generally, it will appear to be fairly smooth.
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Fig. 3. Bracing curves (a) for sti�nesses in the range ÿ1 to �1, (b) for ¯exibilities in the range �1 to ÿ1, (c) for both, and (d) wrapped

onto a cylinder.

Fig. 2. Bracing curves (a) contained in horizontal layers between asymptotes, and (b) as boundaries of mode count regions.
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Rank 1 bracing is a single helix winding its way up a cylinder, the circumference of which is marked out
partly in sti�ness, and partly in ¯exibility. Rank 2 bracing is simply two helices on the cylinder. 2

2.3. Mode counting

The eigenvalue problem of Eq. (1) has symmetric K� and M� , and if we are considering a structure, as
distinct from a mechanism, K� is positive de®nite. This eigenvalue problem can be solved by the Sturm
sequence or mode count algorithm (Parlett, 1980; Wittrick and Williams, 1971). The bracing curves can be
seen to divide the k±x plane into regions; that below the x1 curve, that between the x1 and x2 curves, and
so on. These are designated R0, R1, R2, etc., with the number obviously indicating the lower of the
bounding curves, as shown in Fig. 2b. A mode counting algorithm gives this region number as a function of
k and x.

Eq. (7) has a particularly simple mode count algorithm. K��k;x� � K� �G�
TF�
ÿ1G� ÿ x2M� is formed at the

desired point, (k;x), and is converted to a diagonal form by any real congruent transform whatever (Gauss
factorisation, K� � L�D�L�

T, is a popular method). The mode count is the number of negative elements of this
diagonal form. As an example, the cantilever, with a brace sti�ness of 100 and a frequency of 40, has

K��100; 40� �
ÿ201:1 3:048 ÿ198:9 36:38

3:048 6:095 ÿ36:38 5:429
ÿ198:9 ÿ36:38 ÿ402:3 0

36:38 5:249 0 12:19

2664
3775; �10�

giving the Gauss factors

L� �
1 : : :

ÿ0:0152 1 : :
0:9886 ÿ6:414 1 :
ÿ0:1809 0:9737 ÿ0:0052 1

2664
3775; D� �

ÿ201:1
6:141

ÿ458:4
12:96

2664
3775: �11�

D� has two negative elements, indicating that the point �k;x� � �100; 40� lies in region R2, as is shown by
point A in Fig. 2b.

The mode count ranges from 0 potentially to N, the number of freedoms in the problem. Eq. (8) has a
dimension of r (here 1), so clearly needs a di�erent mode count algorithm (Williams and Anderson, 1983;
Lawther, 1995), which, in passing, provides an alternative proof for the monotonic slope of the bracing
curves.

The brace sti�ness calculation of Eq. (9), when combined with monotonic slope and mode counting,
determines exactly which mode has been braced. Forming, factoring and mode counting K��x� � K� ÿ x2M�
determines the mode count for a point (k � 0;x) on the x axis. Eq. (9) gives the bracing sti�ness needed for
this value of x to become a natural frequency. If it is positive, the bracing curve must be to the right of
(0;x) and is therefore on the lower boundary of the region containing (0;x). The mode braced is equal to
the mode count calculated. On the other hand, a negative bracing sti�ness leads left, to the upper boundary
of the region, and the mode which is mode count �1. In Fig. 4, points A and B are on the x axis in region
R1. Bracing at xA involves positive sti�ness, and leads to A0 on the lower bound x1 curve. Bracing at xB

requires negative sti�ness, leading to B0 on the upper bound curve x2. The signi®cant di�erence between
points A and B is that they are on opposite sides of the asymptote separating the two bracing curves which
bound the R1 mode count region.

2 This assumes that the rank 2 brace is described by a single sti�ness parameter.
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3. Excluding frequencies

Adding a brace of rank r to a structure changes the frequencies. If the brace has positive sti�ness, the
changes cannot be negative. The nth frequency xn is raised by at least 0, and at most up to xn�r. This is well
known. As a consequence, if a structure has r frequencies in the range �xL;xU� then removing them will
require r braces of rank 1, or a rank r brace, at minimum. The parent problem of the rank 1 brace is
therefore concerned with excluding precisely one frequency. Any fewer and there is no exclusion problem;
any more and a higher rank brace is needed.

The problem is now stated as,

Given a structure which is known to have precisely 1 natural frequency between a lower bound fre-
quency xL and an upper bound frequency xU, can a rank 1 brace be designed to remove the frequency
from the range �xL;xU�?

Let the included frequency be the nth, the bracing sti�nesses required to make xL a natural frequency be
kL, and that to brace to the upper frequency be kU. The point, L � �kL;xL�, is on either the �nÿ 1�th bracing
curve, or the nth, depending on the sign of kL, and U � �kU;xU� is similarly on the nth or the �n� 1�th. U
and L are either

(i) both on the same curve, the nth,
(ii) on adjacent curves (nÿ 1 and n, or n and n� 1) or
(iii) are on the �nÿ 1�th and �n� 1�th, separated by the nth curve,

which come about when
(i) kL is negative and kU is positive,
(ii) kL and kU have the same sign,
(iii) kL is positive and kU is negative, respectively.

These possibilities are shown in the exclusion diagrams of Fig. 5.

Fig. 4. Bracing to the upper and lower bound curves.
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Point L is necessarily below U, and in cases (i) and (iii), their relative horizontal positions are deter-
mined, but not in (ii), so four di�erent exclusion diagrams are possible. Attention is drawn to three
rectangular regions of the diagrams, all bounded vertically by x � xL and x � xU, and with horizontal
ranges from k � ÿ1 to the lesser of kL and kU, from the lesser to the greater of these, and from the greater
to k � �1.

In Fig. 5a, where L and U lie on the same bracing curve, we must have kL < kU. The single bracing curve
passes diagonally through the centre rectangle. With rank 1 bracing, any horizontal line drawn on the
bracing diagram will intersect precisely one bracing curve, and all horizontal lines between xL and xU have
this intersection in the centre rectangle, so that the others to the left and right, shown shaded, are curve free.
Any brace sti�ness >kU will exclude the contained frequency, as will any <kL.

If L and U are on adjacent bracing curves, we could have either kL < kU or kU < kL, shown in Fig. 5b and
c, respectively. In both cases, the frequency range contains the asymptote separating the two curves, en-
suring that the outer rectangles contain bracing curves, so only the central rectangle is possibly curve-free.
For kL < kU, the central rectangle contains both curves (Fig. 5b), but is free, if kU < kL (Fig. 5c) and we
have a second way of excluding the unwanted frequency. In these ®gures, both kL and kU have the same
sign. Whether they are both positive, as shown, or both negative, is immaterial (except that negative bracing
may be physically meaningless).

Fig. 5. Exclusion diagram possibilities. Note: these possibilities are labelled (a)±(d).
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If L and U lie on the �nÿ 1�th and �n� 1�th bracing curves, as in Fig. 5d, the frequency range contains
both asymptotes of the nth curve, which therefore lies on all three rectangles. Exclusion is impossible.

Excluding a frequency means being in the shaded area of either Fig. 5a or c, described as open exclusion
and closed exclusion, respectively.

3.1. Assessing exclusion

Determining whether a given brace added to a given structure will exclude frequencies from a stated
range �xL;xU� is now straightforward. Bracing sti�nesses kL and kU are calculated from Eq. (9). These
values determine the curves on which L and U lie, and therefore which of the exclusion diagrams applies. If
the resulting picture looks like Fig. 5a or c, suitable sti�ness will solve the problem, and if it looks like Fig.
5b or d, the unwanted frequency cannot be excluded. These possibilities are summarised in Table 1.

If the structure has several tunable elements, existing or proposed, each one can be considered in the
above manner. Part of the solution is to con®rm that a single mode is contained in the range �xL;xU�,
probably through Gauss factorisation, but for simplicity of the argument, a signed Choleski factorisation is
used. The diagonal factor has elements of �1, and we have

K� � K��0;x� � L� I
ÿ
�L�

T; I
ÿ
� � d�1c; �12�

and therefore,

K�
ÿ1 � L�

ÿT I
ÿ
�L�
ÿ1: �13�

Bracing sti�nesses are now

ÿ1=k � g
�

K�
ÿ1g
�

T � g
�

L�
ÿT

� �
I
ÿ
� L�

ÿ1g
�

T

� �
: �14�

Returning to the cantilever example, and bracing to exclude frequencies in the range �14; 24�,
K�L � K��0; 14� is formed and factored to give

L�
ÿT
L �

0:1299 ÿ2:198 2:207 0:1304
� 6:081 ÿ6:046 ÿ0:2319
� � 0:0119 0:0698
� � � 0:1889

2664
3775; I

ÿ
�L � d1 1ÿ 1 1c; �15�

and K�U � K� (0, 24) similarly gives

L�
ÿT
U �

0:3019 0:2652 ÿ0:2485 0:1647
� 0:1768 1:232 ÿ0:7262
� � 0:1729 ÿ0:0569
� � � 0:2177

2664
3775; I

ÿ
�U � dÿ1 1ÿ 1 1c: �16�

Table 1

Exclusion criteria

kL < kU kU < kL

kL, kU opposite sign Open exclusion is possible (Fig. 5a) Exclusion is not possible (Fig. 5d)

kL, kU same sign Exclusion is not possible (Fig. 5b) Closed exclusion is possible (Fig. 5c)
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A selection of di�erent braces can now be readily assessed. Considering bracing of, say, the midspan
de¯ection, g

�
� 0 0 1 0� �, g

�
L�
ÿT
L � � � � 0:0119 0:0698� and kL � ÿ211:6, with a similar calculation

giving kU � 37:5. All sti�nesses outside these values will give open exclusion. Likewise, bracing the tip
rotation will work, with a similar graph, and as shown previously, bracing the tip de¯ection gives a closed
exclusion of the second mode. Bracing the midspan rotation cannot exclude the contained frequency. 3

3.2. Constructing exclusion

A question that is still open is

Given bounding frequencies, known to contain 1 natural frequency, is there always a brace capable of
excluding the contained frequency?

The answer is ÔyesÕ, for the following reason:
The geometric connection g

�
describes how a brace connects to the freedoms. With a coordinate trans-

formation to the eigenspace of K� ÿ x2M� , these become connections to the vibration modes (Barbato and
Lawther, 1997), and in this space a brace such as [0..0 1 0..] will connect to one mode only. With such a
connection the graph of bracing curves looks like Fig. 6, where the connected mode is the only one to give
altered frequencies, and all others are horizontal lines (when the graph is plotted in the eigenvalues k and
x2, all lines are straight).

Connecting to the included mode produces an open exclusion graph. The brace, in the original coor-
dinates, comes from the inverse of the matrix of eigenvectors, but can be constructed without inversion, or a
complete eigensolution, using the orthogonality of the eigenvectors through K� (or M� , or K� ÿ x2M� ): if u� is
the vibration mode to be excluded, g

�
� u�

TK� is the brace that will exclude it. The second mode of the
cantilever is u2� � ÿ0:2004 0:9650 0:1447 0:0871f g, giving g2�

� u�
T

2
K� � ÿ0:3136 ÿ0:0085�

0:94940:0176�. This brace geometry can exclude up to the full range of �x1;x3� � �3:518; 75:16�.
The above construction requires that the included mode shape is known.

Can the exclusion be achieved without solving for any eigenvalues or eigenvectors?

3 Much of the above and following calculation is for demonstration. Explicit formulation of LÿT is going to destroy any banding of

L, and is best avoided in a problem of any size.

Fig. 6. Bracing graph of a braced single mode.
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Again, the answer is ÔyesÕ, but the argument is more complex. It revolves around creating an open ex-
clusion graph, using the knowledge that xL and xU lead to mode counts di�erent exactly by 1, and

therefore I
ÿ
�U has one more element of ÿ1 than does I

ÿ
�L.

From Eq. (14), namely,

ÿ1=k � g
�

K�
ÿ1g
�

T � g
�

L�
ÿT

� �
I
ÿ
� L�

ÿ1g
�

T

� �
� x�I

ÿ
�x�

T;

ÿ1=k is the length of a vector x� measured through the (pseudo) metric I
ÿ
�. It is

P�x2
i , with the � corre-

sponding to the positive elements of I
ÿ
�, and the ÿ corresponding to the negative. The vector x� contains the

brace connections in the coordinates of a Choleski transformation, and partitions naturally into x� ��x�ÿ x�
��, giving

ÿ1=k � ÿ
X

i

�xÿ�2i �
X

i

�x��2i �17�

in general, with

ÿ1=kL � g
�

K�
ÿ1
L g
�

T � g
�

L�
ÿT
L

� �
I
ÿ
�L L�

ÿ1
L g
�

T

� �
� x�L I

ÿ
�Lx�

T
L � ÿ

X
i

�xÿL �2i �
X

i

�x�L �2i �18�

and

ÿ1=kU � g
�

K�
ÿ1
U g
�

T � g
�

L�
ÿT
U

� �
I
ÿ
�U L�

ÿ1
U g
�

T

� �
� x�U I

ÿ
�Ux�

T
U � ÿ

X
i

�xÿU�2i �
X

i

�x�U�2i ; �19�

at the limits of the band.
Both these involve the same brace g

�
, so x�U and x�L are obviously related as

x�L � x�UL�
T
UL�

ÿT
L � x�UT�UL; �20�

and when partitioned,

x�
ÿ
L x�

�
L

h i
� x�

ÿ
U x�

�
U

h i T�
ÿÿ
UL T�

ÿ�
UL

T�
�ÿ
UL T�

��
UL

" #
: �21�

For open exclusion, kU must be positive, or ÿ1=kU negative. Choosing x�
�
U � 0 and x�

ÿ
U 6� 0 ensures this,

and further gives

x�
ÿ
L � x�

ÿ
UT�

ÿÿ
UL ; �22a�

x�
�
L � x�

ÿ
UT�

ÿ�
UL : �22b�

Open exclusion equally requires kL to be negative, or ÿ1=kL to be positive, which is guaranteed if x�
ÿ
L � 0.

An algorithm that produces both x�
�
U � 0 and x�

ÿ
L � 0, simultaneously with x�

ÿ
U 6� 0 and x�

�
L 6� 0, must

construct a brace for open exclusion of the contained mode.
If the frequency to be excluded is the nth then x�

ÿ
U has n elements, and x�

ÿ
L has nÿ 1. T�

ÿÿ
UL has one more

row than columns, and the rows are therefore linearly dependent. Choosing x�
ÿ
U to be this dependence

completes the construction, except for a transformation which writes the brace g
�

in the original coordinates.
This algorithm is now demonstrated using the matrix factors of Eqs. (15) and (16) to construct a brace

for openly excluding the contained second mode from the range [14,24].
The transformation from x�U to x�L is
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x�L � x�UT�UL � x�U

0:4304 ÿ37:49 37:83 2:763
0 34:40 ÿ34:68 ÿ2:547
0 0 0:06872 0:6890
0 0 0 0:8676

2664
3775: �23�

I
ÿ
�U has its two negative elements in positions 1 and 3, and I

ÿ
�L has its one negative element in position 3.

T�
ÿÿ
UL relates the elements of x�L with negative measure to the similar elements of x�U, and is therefore the

partition of T�UL contained in rows 1 and 3, and in column 3:

T�
ÿÿ
UL �

37:83
0:06872

� �
: �24�

Choosing x�
ÿ
U � � 0:06872 ÿ37:83 �, together with x�

�
U � 0 will give a brace for open exclusion.

This brace,

x�U � 0:06872 0 ÿ37:83 0� � �25�

transforms to

g
�
� x�UL�U � �ÿ0:0010 0:0015 0:9661 0:2582 �; �26�

after norming to g
�

g
�

T � 1.

Sti�nesses with these connections are kL � ÿ74:4 and kU � 35:0. As con®rmation of the open exclusion,
the graph of this brace is shown in Fig. 7.

The condition x�
ÿ
U 6� 0; x�

�
U � 0, x�

ÿ
L � 0, and x�

�
L 6� 0 is su�cient but not necessary for open exclusion,

which can be achieved in many more ways, though not nearly as simply as in the above construction.

3.3. Constructing closed exclusion

The foregoing section shows constructions for open exclusion of frequencies, both with and without
knowledge of the natural frequencies and modes. Closed exclusions di�er from open in that they are de-
stroyed if the brace is made too sti�. The o�ending frequency is cleared from the range, but the too-sti�
brace has raised a lower frequency to now occupy the band.

Closed exclusion can exist with both positive and negative brace sti�nesses, and with two exceptions, all
frequencies are open to exclusion by either. Closed exclusion of the nth frequency with positive sti�ness

Fig. 7. Bracing the cantilever with g � ÿ0:0010 0:0015 0:9661 0:2582� �.
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involves a graph like Fig. 5c, where U is on the nth bracing curve, and L is on the �nÿ 1�th. The funda-
mental frequency has no lower curve, and cannot be excluded in this way. For similar reasons, the highest
frequency has no closed exclusion with negative bracing sti�ness. All others are logically possible, and
constructible, both with and without knowledge of the frequencies and modes.

The results are not particularly interesting. The algorithms are somewhat more complex than those
above, and with open exclusion always possible, there seems no reason to prefer a closed exclusion.

3.4. Closed v open exclusion

Closed and open exclusions are physically distinct. One can be destroyed by a brace being made too sti�,
and the other can not. Bracing the included mode only, with a bracing diagram as in Fig. 6, seems a
ÔnaturalÕ way to move an included frequency, and this can only give an open exclusion diagram. In this
sense, open exclusion would seem natural and closed exclusion a bit arti®cial.

In another sense, they are not all that di�erent. Fig. 8a shows a bracing curve drawn on a cylinder, in the
manner of Fig. 3d. The band �xL;xU� appears as a hoop, and the hatched region shows a part of this hoop
that gives a closed exclusion. A change to the brace geometry means a movement of the helix, forcing the
exclusion region to move horizontally. If the movement is such that the new region includes the f � 0 axis,
diametrically opposite the k � 0 axis, the exclusion has opened. A brace can be changed continuously so
that open exclusion closes, and vice versa. The changeover occurs when the vertical line, f � 0, the hori-
zontal circle, x � xL (or xU), and the bracing curve are concurrent.

Fig. 8b shows an open exclusion on the same bracing curve, emphasising that the distinction is con-
tainment of the f axis (Fig. 8a and b comprise Fig. 1b drawn on the cylinder).

4. Closing remarks

Altering structures to exclude unwanted vibration frequencies has been analysed at the level of a parent
problem, in which a single (i.e. rank 1) brace is used to exclude a single frequency. Assessing a given brace

Fig. 8. Fig. 1b with (a) its closed exclusion and (b) its open exclusion, drawn on the cylinder.
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has been demonstrated, but more interestingly, it has been shown that the problem is always solvable, with
algorithms for workable braces, both with and without detailed knowledge of the mode to be excluded.

A rank 1 brace is equivalent to a truss member in that both are substructures a�ecting a single gener-
alised freedom. Physically, a truss member can only stress a structure through two equal and opposite
forces acting along the same line (or only one force if the member connects to the ground). General rank 1
braces can be more complex than this. Even in the simple example of the cantilever, the physical sub-
structure corresponding to the brace of Eq. (26), used in producing Fig. 7, is far from obvious. Braces have
been constructed mathematically, but just how practical it would be to construct one of these physically is
another question.

The exclusion problem, with the initial form �K� ÿ x2M� �u� � 0�, has been treated entirely in terms of
changes to K� , and it was earlier noted that an alternative form equally allows changes to M� . K� is always
positive de®nite for a structure, a centrally important property for mode counting. M� is likely to be so, too,
but not necessarily. If M� is only semi-de®nite, mode counting needs closer scrutiny. Also, a rank 1 change
to M� is hard to imagine. Mass is a scalar, and a�ects all directions equally. A point mass added to a position
has the same mass in the x, the y and the z directions. But it is still valid to see this as 3 rank 1 changes,
albeit simultaneous, and therefore able to be built from the parent problem.

Of course, changes could be made to both K� and M� , but these will only be rank 1 in the simplest cases.

Acknowledgements

This work was completed while visiting the School of Mechanical Engineering at the University of Bath,
UK.

Appendix A. Bracing curves in the neighbourhood of a singular K(x)

Transformation to modal coordinates z� � U�
ÿ1u�, where U� is the matrix of eigenvectors, gives diagonal

sti�ness and mass matrices. With the columns of U� scaled so that U�
TK�U� � I�, the corresponding (diagonal)

mass matrix is D�
M � U�

TM� U� , brace connections g
�

transform to modal connections c
�
� g
�

U� , and Eq. (9)
becomes

1=k � ÿ
X

i

c2
i x

2
i

x2
i ÿ x2

: �A:1�

The connection to mode n is cn, and the bracing curve in the neighbourhood of xn �where K��x� is
singular� is di�erent depending on whether or not this connection is zero.

(i) If the brace connects to the nth mode then cn 6� 0, 1=k becomes in®nite at x � xn and k is therefore 0,
con®rming that the bracing curve passes through (0;xn). In the neighbourhood of xn, let x2 � x2

n � e, when
Eq. (A.1) is

k � e
c2

nx
2
n

:

The bracing curve passes through (0;xn) with a ®nite slope

ox
ok
� c2

nxn

2
:

At the origin, k � 0, the slope is positive, but the origin could be at any k, so,
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ox
ok

> 0 8k

showing that the bracing curves are monotonic increasing (unless they are the horizontal lines of the next
section).

(ii) Eq. (7) is more useful for considering cn � 0. With rank 1 bracing, and a transformation to modal
coordinates,

I�

�
� c
�

Tkc
�
ÿ x2D�

M

�
z� � 0�: �A:2�

Both I� and D�
M are diagonal, so at k � 0, the equations separate, as they must, because the modal co-

ordinates are derived at k � 0. In general, c
�

Tc
�

is not diagonal, and the equations fail to separate for other k,
but if cn � 0 the nth equation separates from the others to give the eigenvector as z� � e�n, and the eigenvalue
from

1� 0k ÿ x2=x2
n � 0;

i. e.

x � xn 8k:

The bracing curve is a horizontal line. If a brace has no connection to a mode, it has no in¯uence on it. The
relation,

ox
ok
� c2

nxn

2

applies for all cn including cn � 0.
Returning to Eq. (A.1), which is now

1=k � ÿ
X
i 6�n

c2
i x

2
i

x2
i ÿ x2

;

when cn � 0, the nth mode xn has no e�ect on other bracing curves in its neighbourhood, or anywhere else.
Other curves may intersect its horizontal bracing curve, or asymptote to it. It can almost completely be
ignored. Almost, but not quite. It does act as a boundary for adjacent mode count regions (Section 2.3),
and so gives bounds on how far the brace can move the frequencies.
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