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Abstract

Structures vibrate, and sometimes with frequencies that are not wanted. Structures are commonly required to be
resonance-free within certain frequency ranges, and if they do have undesirable frequencies, these can be moved by
changing the structure stiffness, or mass, or both. A mixed stiffness/flexibility formulation of the vibration problem
presents alternative condensations to stiffness and flexibility eigenvalue equations for an altered structure. The flexibility
form gives more compact equations, and this is developed to solve a parent problem where a structure has a single
frequency in a nominated band, to be removed by adjusting the stiffness of a brace stressing the structure in a single
way. Interestingly, if the original eigenvalue problem has a Sturm sequence, the frequency exclusion problem can be
solved without determining any frequency or mode of the original structure. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Structures have natural frequencies of vibration, and some of them may be undesirable. Any unwanted
frequencies of an existing structure were probably eliminated in the original design, but we may be con-
cerned with a proposed structure, or we could be looking at an existing structure that has been changed in
some way, either intentionally or through damage, and now has frequencies that are not wanted.

Stiffness equations for free vibration of a structure have the eigenvalue form

(K- oM)u=0, (1)
where K and M are the structure stiffness and mass matrices, respectively. Solutions are associated pairs
(w,u) which are a vibration frequency and vibration mode respectively.

Changes to the stiffness, here called bracing, or to the mass, will change these solutions. This paper
concentrates on changes to the stiffness, but as Eq. (1) has the equivalent form,
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Fig. 1. Braced cantilever: (a) model and (b) bracing curves.
(M- 1/0K)u=0, (1a)

changes to the mass are fundamentally the same, although a couple of differences in detail are noted in the
closing remarks.

As an example of bracing, consider the cantilever beam, modelled with two finite elements, shown in Fig.
la. The model has four freedoms, and gives vibration frequencies of 3.518, 22.22, 75.16 and 218.1 (these are
values of the dimensionless frequency wL?+\/p/EI, where L is the span, EI, the flexural rigidity, and p, the
mass per unit length).

When braced, here by a simple spring supporting the free end, all frequencies are raised by an amount
depending on the stiffness of the brace. The relationships between the vibration frequencies and brace
stiffness are bracing curves, and the curves for the first two modes of the cantilever, braced at the tip, are
shown in Fig. 1b. The figure is plotted in axes of k and w, rather than in the eigenvalues k and w?. This has
been done for compactness, and is continued throughout the paper. Nothing essential is lost in this.

If we wished to have this structure with no frequencies in the range of 14-24, then from an inspection of the
solid rectangle of Fig. 1b, this is realised with any spring with stiffness in the range of the rectangle, 18152
(these are values of the dimensionless parameter kL /EI, and how these are calculated directly will be shown
later). Similarly, the dashed rectangle shows that all frequencies between 20 and 30 are removed if the spring
stiffness exceeds 76. Bracing with negative stiffness makes no physical sense in this structure, but in others it
may simply be reducing the stiffness of an existing element. There is no theoretical reason to discount negative
bracing, and a brace with stiffness less than —29 will equally exclude all frequencies in the same range of 20-30.
These rectangles, bounded by the relevant frequency range, are completely free of bracing curves.

No tip brace can exclude all frequencies in the range of 10-30, and we cannot draw a rectangle, bounded
by frequencies of 10 and 30 and free of curves although it will be shown that we can construct a brace to
produce this result.

Bracing to clear frequency bands is equivalent to locating open spaces on the bracing diagram, or if the
form of the brace is unspecified, to constructing a bracing diagram with the open space in the right place.

2. Formulation

Free vibration equations of the original structure are

(K- oM)u=0
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Bracing will add stiffness to some displacements u, related to the structure displacements by

u, = Gu, )

where G gives the geometric connections of the brace.
The bracing will have forces Ny, in the vibration mode, related to the braced displacements by

t, = FNp. (3)
Contragredience gives these forces in the original coordinates as

P, =GNy 4)

and with the total of the internal forces applied to the nodes now (IS — w2M>g + Py, the equilibrium
equations of the braced structure are

(K- o’™M)u+G™N, = 0. (5)

Egs. (2), (3) and (5) combine to give

K-o'M G'
G -F

~

u

1\1,1 =0 (6)

Eq. (6) describes the new, braced structure in a mixed formulation. The original structure is included
through the original, unaltered, stiffness matrix occupying the leading diagonal submatrix position, and the
bracing is included through a flexibility relation augmenting the original.

Static condensation to u eliminates N, and gives the assembled stiffness of the braced structure as

(K+6F 6~ oM Ju—0 U

(Williams and Anderson, 1983) which is a new eigenvalue problem with the same size as the original.
Alternatively, condensation to Ny eliminates u, giving

(6~ om) 67+ F)N, 0. Q

which is also an eigenvalue problem, but with the size of N}, the number of independent stressing modes of
the brace, here called the rank of the brace (it is the same as the rank of the brace stiffness matrix (N;TE*(N}).
This is likely to be a much smaller problem than that of Eq. (7).

Each form has its applications. Returning to the example of Fig. 1, if we were to ask, ‘what are the
frequencies of a cantilever when braced at the tip with a stiffness of 100?” we know F~' (1 0 0) and we know G
(its a brace of the tip deflection, freedom 1), and Eq. (7) will give the required frequencies. Diagrammati-
cally, we are drawing a vertical line at the £ = 100 mark of Fig. 1b, and searching along it for solutions. It is
not different from Eq. (1), which searches the £ = 0 line.

Had we asked, ‘what stiffness of tip brace will give a frequency of 30?7 Eq. (8) is more attractive than Eq.
(7) because it is likely to be much smaller. This draws a horizontal line at & = 30 and scans it for solutions.

A more open and interesting question is, ‘If the second natural frequency is to be 150, what rank of brace
is required, and how should it be connected?
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2.1. Rank 1 bracing

Rank 1 bracing is the simplest. With a single stress mode, N;, becomes a scalar Ny, and F similarly
becomes f. The connections G are a vector g, and Eq. (8) is now

(gIS(w)‘lgT +f )Nb =0, (8a)
where K(w) has been written for (IS — wzl\N/I) This single eigenvalue equation has the solution
f=1/k=—gK(o)'g". 9)

An added support is a typical example of a rank 1 brace, as is the simple spring or truss member added to
the cantilever of Fig. 1. Freedom 1 is the only one braced here, and the connection for this is g =
[1 0 0 O0].To calculate the spring stiffness which gives a frequency of 30, K(30) is formed and & = 75.8
is calculated from Eq. (9).

Brandon (1984) has considered the analysis of altered structures, concentrating on properties of the
receptance (flexibility) matrix after the changes. The above analysis adds nothing to his results, except,
perhaps, a different perspective.

While rank 1 bracing is the simplest, it is also completely general in that bracing of any rank r can be
written as r independently applied rank 1 braces, as noted by Brandon. The equations take this form if we
calculate any diagonal factorisation of F (Gauss or Choleski would do), and use it to transform the stresses
into a natural system.

2.2. Shapes of the bracing curves

Except when o is a natural frequency ;, K(w) is invertible and Eq. (9) has one solution only. Any
horizontal line drawn in Fig. 1b will intersect exactly one bracing curve, with a limiting exception when
f =0, which is k = +o0. The figure is divided into horizontal layers, each containing a single bracing curve,
which must be monotonic increasing, as shown in the appendix. The curves asymptote to those values of w
which give /= 0, and are ‘S’ shaped in between (except for the lowest and uppermost curves, which have
only a single asymptote).

The case of a singular K(w;) is discussed in the appendix, where it is shown that nothing essential in the
above description is changed.

This graph structure, with each curve in its own horizontal region, shown in Fig. 2a, is a property of rank
1 bracing. For rank r, Eq. (8) will have r solutions, and a horizontal line will cut r bracing curves. These ‘S’
shaped bracing curves are the ‘auxiliary function’ used by Weissenburger (1968) and Brandon (1984, 1990),
although these authors use a flexibility axis where stiffness is used here. A hybrid view gives an interesting
alterative interpretation. Plot the curves using stiffnesses in the range of —1 to +1 (Fig. 3a), with a similar
plot for flexibilities ranging from +1 to —1 (Fig. 3b). The limits, of course, are the same, and the two plots
can be joined smoothly, ! at either boundary (Fig. 3c). If the joined plot is wrapped into a cylinder the
bracing curves now appear as the single helix of Fig. 3d. The asymptotes in the stiffness plot are the in-
tercepts of the Weissenburger—Brandon flexibility plot, and equally, the asymptotes of the flexibility plot
are the intercepts in the stiffness plot, which are the natural frequencies.

! The function will not be analytic at the join, but it will be C' continuous in all cases, except for rare circumstances when the
continuity is reduced to C°. Generally, it will appear to be fairly smooth.
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Fig. 2. Bracing curves (a) contained in horizontal layers between asymptotes, and (b) as boundaries of mode count regions.
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Fig. 3. Bracing curves (a) for stiffnesses in the range —1 to +1, (b) for flexibilities in the range +1 to —1, (c) for both, and (d) wrapped

onto a cylinder.
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Rank 1 bracing is a single helix winding its way up a cylinder, the circumference of which is marked out
partly in stiffness, and partly in flexibility. Rank 2 bracing is simply two helices on the cylinder. *

2.3. Mode counting

The eigenvalue problem of Eq. (1) has symmetric K and M, and if we are considering a structure, as
distinct from a mechanism, K is positive definite. This elgenvalue problem can be solved by the Sturm
sequence or mode count algorlthm (Parlett, 1980; Wittrick and Williams, 1971). The bracing curves can be
seen to divide the k&~ plane into regions; that below the w, curve, that between the w; and w, curves, and
so on. These are designated Ry, Ry, R,, etc., with the number obviously indicating the lower of the
bounding curves, as shown in Fig. 2b. A mode counting algorithm gives this region number as a function of
k and o.

Eq. (7) has a particularly simple mode count algorithm. K(k, w) = K + GTF G — w’M is formed at the
desired point, (k, w), and is converted to a diagonal form by any real congruent transform whatever (Gauss
factorisation, K = I:]N)I: , 1s a popular method). The mode count is the number of negative elements of this
diagonal form. As an example, the cantilever, with a brace stiffness of 100 and a frequency of 40, has

—201.1 3.048 —198.9 36.38
3.048  6.095 —-36.38 5429

K(100.40)=| 1989 3638 —4023 0 |° (10)
3638 5249 0 1219
giving the Gauss factors
I . L _201.1
00152 1 S 6.141
L=1 09886 —6414 1 .|° P= _458.4 : (11)
0.1809 0.9737 —0.0052 1 12.96

D has two negative elements, indicating that the point (k,w) = (100, 40) lies in region R,, as is shown by
point A in Fig. 2b.

The mode count ranges from 0 potentially to N, the number of freedoms in the problem. Eq. (8) has a
dimension of r (here 1), so clearly needs a different mode count algorithm (Williams and Anderson, 1983;
Lawther, 1995), which, in passing, provides an alternative proof for the monotonic slope of the bracing
curves.

The brace stiffness calculation of Eq. (9), when combined with monotonic slope and mode counting,
determines exactly which mode has been braced. Forming, factoring and mode counting K(w) = K — oM
determines the mode count for a point (k = 0, w) on the w axis. Eq. (9) gives the bracing stiffness needed for
this value of @ to become a natural frequency. If it is positive, the bracing curve must be to the right of
(0, w) and is therefore on the lower boundary of the region containing (0, w). The mode braced is equal to
the mode count calculated. On the other hand, a negative bracing stiffness leads left, to the upper boundary
of the region, and the mode which is mode count +1. In Fig. 4, points A and B are on the w axis in region
R;. Bracing at wa involves positive stiffness, and leads to A’ on the lower bound w, curve. Bracing at wg
requires negative stiffness, leading to B’ on the upper bound curve w,. The significant difference between
points A and B is that they are on opposite sides of the asymptote separating the two bracing curves which
bound the R; mode count region.

2 This assumes that the rank 2 brace is described by a single stiffness parameter.
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Fig. 4. Bracing to the upper and lower bound curves.

3. Excluding frequencies

Adding a brace of rank r to a structure changes the frequencies. If the brace has positive stiffness, the
changes cannot be negative. The nth frequency o, is raised by at least 0, and at most up to w,,.. This is well
known. As a consequence, if a structure has r frequencies in the range [wy, wy] then removing them will
require r braces of rank 1, or a rank r brace, at minimum. The parent problem of the rank 1 brace is
therefore concerned with excluding precisely one frequency. Any fewer and there is no exclusion problem;
any more and a higher rank brace is needed.

The problem is now stated as,

Given a structure which is known to have precisely 1 natural frequency between a lower bound fre-
quency o and an upper bound frequency wy, can a rank 1 brace be designed to remove the frequency
from the range [wy, wy]?

Let the included frequency be the nth, the bracing stiffnesses required to make wp a natural frequency be
ki, and that to brace to the upper frequency be ky. The point, L = [kr, wy ], is on either the (n — 1)th bracing
curve, or the nth, depending on the sign of &, and U = [ky, wy] is similarly on the nth or the (n + 1)th. U
and L are either

(i) both on the same curve, the nth,

(i1) on adjacent curves (n — 1 and n, or n and n+ 1) or

(iii) are on the (n — 1)th and (n + 1)th, separated by the nth curve,
which come about when

(1) ki is negative and ky is positive,

(i1) k. and ky have the same sign,

(1ii) k. is positive and ky is negative, respectively.

These possibilities are shown in the exclusion diagrams of Fig. 5.
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Fig. 5. Exclusion diagram possibilities. Note: these possibilities are labelled (a)—(d).

Point L is necessarily below U, and in cases (i) and (iii), their relative horizontal positions are deter-
mined, but not in (ii), so four different exclusion diagrams are possible. Attention is drawn to three
rectangular regions of the diagrams, all bounded vertically by w = o and w = wy, and with horizontal
ranges from k = —oo to the lesser of k. and ky, from the lesser to the greater of these, and from the greater
to k = +o0.

In Fig. 5a, where L and U lie on the same bracing curve, we must have ki < ky. The single bracing curve
passes diagonally through the centre rectangle. With rank 1 bracing, any horizontal line drawn on the
bracing diagram will intersect precisely one bracing curve, and all horizontal lines between w; and wy have
this intersection in the centre rectangle, so that the others to the left and right, shown shaded, are curve free.
Any brace stiffness >ky will exclude the contained frequency, as will any <ki.

If L and U are on adjacent bracing curves, we could have either &y < ky or ky < ki, shown in Fig. 5b and
¢, respectively. In both cases, the frequency range contains the asymptote separating the two curves, en-
suring that the outer rectangles contain bracing curves, so only the central rectangle is possibly curve-free.
For ki < ky, the central rectangle contains both curves (Fig. 5b), but is free, if ky < ki (Fig. 5c) and we
have a second way of excluding the unwanted frequency. In these figures, both k; and ky have the same
sign. Whether they are both positive, as shown, or both negative, is immaterial (except that negative bracing
may be physically meaningless).
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If L and U lie on the (n — 1)th and (n + 1)th bracing curves, as in Fig. 5d, the frequency range contains
both asymptotes of the nth curve, which therefore lies on all three rectangles. Exclusion is impossible.

Excluding a frequency means being in the shaded area of either Fig. 5a or c, described as open exclusion
and closed exclusion, respectively.

3.1. Assessing exclusion

Determining whether a given brace added to a given structure will exclude frequencies from a stated
range [wp,wy] is now straightforward. Bracing stiffnesses k. and ky are calculated from Eq. (9). These
values determine the curves on which L and U lie, and therefore which of the exclusion diagrams applies. If
the resulting picture looks like Fig. 5a or c, suitable stiffness will solve the problem, and if it looks like Fig.
5b or d, the unwanted frequency cannot be excluded. These possibilities are summarised in Table 1.

If the structure has several tunable elements, existing or proposed, each one can be considered in the
above manner. Part of the solution is to confirm that a single mode is contained in the range [w, wyl,
probably through Gauss factorisation, but for simplicity of the argument, a signed Choleski factorisation is
used. The diagonal factor has elements of +1, and we have

K =K(0,0) =LILT, 1= [+1], (12)
and therefore,

K'=LTIL™". (13)
Bracing stiffnesses are now

k=g g = (T (L ). 19

Returning to the cantilever example, and bracing to exclude frequencies in the range [14,24],
K. = K(0,14) is formed and factored to give

[0.1299 —2.198 2.207 0.1304
T 6.081 —6.046 —0.2319 T B
L= : : 00119 00608 | =M 1-11] (13)
I 0.1889
and Ky = K(0, 24) similarly gives
[0.3019 0.2652 —0.2485 0.1647
T 0.1768 1.232 —0.7262 T
Ly = C 01729 —00%69 |0 Av=I[-T1-11) (16)
I 0.2177
Table 1
Exclusion criteria
ky < ky ky < kv
kv, ky opposite sign Open exclusion is possible (Fig. 5a) Exclusion is not possible (Fig. 5d)

kv, ky same sign Exclusion is not possible (Fig. 5b) Closed exclusion is possible (Fig. 5¢)
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A selection of different braces can now be readily assessed. Considering bracing of, say, the midspan
deflection,g=[0 0 1 O0],gL;"=[- - 0.0119 0.0698] and k; = —211.6, with a similar calculation
giving ky = 37.5. All stiffnesses outside these values will give open exclusion. Likewise, bracing the tip
rotation will work, with a similar graph, and as shown previously, bracing the tip deflection gives a closed
exclusion of the second mode. Bracing the midspan rotation cannot exclude the contained frequency. *

3.2. Constructing exclusion
A question that is still open is

Given bounding frequencies, known to contain 1 natural frequency, is there always a brace capable of
excluding the contained frequency?

The answer is ‘yes’, for the following reason:

The geometric connection g describes how a brace connects to the freedoms. With a coordinate trans-
formation to the eigenspace of K — w*M , these become connections to the vibration modes (Barbato and
Lawther, 1997), and in this space a brace such as [0..0 1 0..] will connect to one mode only. With such a
connection the graph of bracing curves looks like Fig. 6, where the connected mode is the only one to give
altered frequencies, and all others are horizontal lines (when the graph is plotted in the eigenvalues k and
?, all lines are straight).

Connecting to the included mode produces an open exclusion graph. The brace, in the original coor-
dinates, comes from the inverse of the matrix of eigenvectors, but can be constructed without inversion, or a
complete eigensolution, using the orthogonality of the eigenvectors through K (or M, or K — »?M): if u is
the vibration mode to be excluded, g = u'K is the brace that will exclude it. The second mode of the
cantilever is w, ={-0.2004 0.9650 0.1447 0.0871}, giving g, =u'K=[-0.3136 —0.0085
0.94940.0176]. This brace geometry can exclude up to the full range of [w;, ws] &= [3.518,75.16].

The above construction requires that the included mode shape is known.

Can the exclusion be achieved without solving for any eigenvalues or eigenvectors?

3 Much of the above and following calculation is for demonstration. Explicit formulation of LT is going to destroy any banding of
L, and is best avoided in a problem of any size.
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Again, the answer is ‘yes’, but the argument is more complex. It revolves around creating an open ex-
clusion graph, using the knowledge that w; and wy lead to mode counts different exactly by 1, and
therefore Iy has one more element of —1 than does I;.

From Eq. (14), namely,

~1/k=gK gl = <gIJT>!<L‘1gT) = xIx",

—1/k is the length of a vector x measured through the (pseudo) metric I. It is ) +x?2, with the + corre-
sponding to the positive elements of I, and the — corresponding to the negative. The vector x contains the
brace connections in the coordinates of a Choleski transformation, and partitions naturally into x =
[x™x7], giving

k== ) (17)
in general, with

1k =gkt = (s )1 (L) = st = - Y+ 60 (19)
and

Uk = ' = (gL I (L") = xoloxd = <3000 + 600, (19)

at the limits of the band.
Both these involve the same brace g, so xy and x;, are obviously related as

xu =xvLyLi" = xuTur, (20)

and when partitioned,

P4

(X0 xi]=[xo BHIUL IU{]. 1)

Too T
For open exclusion, ky must be positive, or —1/ky negative. Choosing x{; = 0 and x; # 0 ensures this,
and further gives

xi =xuTor, (22a)

24
=+

~xUTi (220)

Open exclusion equally requires ki to be negative, or —1/k. to be positive, which is guaranteed if x; = 0.
An algorithm that produces both x{; =0 and x; = 0, simultaneously with x;; # 0 and x; # 0, must
construct a brace for open exclusion of the contained mode.

If the frequency to be excluded is the nth then x; has n elements, and x; has n — 1. T; has one more
row than columns, and the rows are therefore linearly dependent. Choosing x{; to be this dependence
completes the construction, except for a transformation which writes the brace g in the original coordinates.

This algorithm is now demonstrated using the matrix factors of Eqgs. (15) and (16) to construct a brace
for openly excluding the contained second mode from the range [14,24].

The transformation from xy to x is
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0.4304 —37.49 37.83  2.763
. T — x 0 3440 —34.68 —2.547
LT RUSUL TRV 0 0.06872  0.6890
0 0 0 0.8676

(23)

iU has its two negative elements in positions 1 and 3, and iL has its one negative element in position 3.
T relates the elements of x; with negative measure to the similar elements of Xy, and is therefore the
partition of Ty, contained in rows 1 and 3, and in column 3:

T = | o | 24
Choosing x; = [0.06872 —37.83], together with x{; = 0 will give a brace for open exclusion.
This brace,
xy =[0.06872 0 —37.83 0] (25)
transforms to
g= xyLy =[—0.0010 0.0015 0.9661 0.2582], (26)

after norming to gg' = 1.

Stiffnesses with these connections are ky = —74.4 and ky = 35.0. As confirmation of the open exclusion,
the graph of this brace is shown in Fig. 7.

The condition xj; # 0, x{; =0, x; =0, and x| # 0 is sufficient but not necessary for open exclusion,
which can be achieved in many more ways, though not nearly as simply as in the above construction.

3.3. Constructing closed exclusion

The foregoing section shows constructions for open exclusion of frequencies, both with and without
knowledge of the natural frequencies and modes. Closed exclusions differ from open in that they are de-
stroyed if the brace is made too stiff. The offending frequency is cleared from the range, but the too-stiff
brace has raised a lower frequency to now occupy the band.

Closed exclusion can exist with both positive and negative brace stiffnesses, and with two exceptions, all
frequencies are open to exclusion by either. Closed exclusion of the nth frequency with positive stiffness

()
304 o
~ 2
T4 2|
7 4572 |
_____ 141 _
|
10 35.0
W
I T T T k
-100 -50 0 50 100

Fig. 7. Bracing the cantilever with g = [—0.0010 0.0015 0.9661 0.2582].
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(a) (b)

Fig. 8. Fig. 1b with (a) its closed exclusion and (b) its open exclusion, drawn on the cylinder.

involves a graph like Fig. S5c, where U is on the nth bracing curve, and L is on the (n — 1)th. The funda-
mental frequency has no lower curve, and cannot be excluded in this way. For similar reasons, the highest
frequency has no closed exclusion with negative bracing stiffness. All others are logically possible, and
constructible, both with and without knowledge of the frequencies and modes.

The results are not particularly interesting. The algorithms are somewhat more complex than those
above, and with open exclusion always possible, there seems no reason to prefer a closed exclusion.

3.4. Closed v open exclusion

Closed and open exclusions are physically distinct. One can be destroyed by a brace being made too stiff,
and the other can not. Bracing the included mode only, with a bracing diagram as in Fig. 6, seems a
‘natural’ way to move an included frequency, and this can only give an open exclusion diagram. In this
sense, open exclusion would seem natural and closed exclusion a bit artificial.

In another sense, they are not all that different. Fig. 8a shows a bracing curve drawn on a cylinder, in the
manner of Fig. 3d. The band [w, wy] appears as a hoop, and the hatched region shows a part of this hoop
that gives a closed exclusion. A change to the brace geometry means a movement of the helix, forcing the
exclusion region to move horizontally. If the movement is such that the new region includes the / = 0 axis,
diametrically opposite the £ = 0 axis, the exclusion has opened. A brace can be changed continuously so
that open exclusion closes, and vice versa. The changeover occurs when the vertical line, f = 0, the hori-
zontal circle, w = @y (or wy), and the bracing curve are concurrent.

Fig. 8b shows an open exclusion on the same bracing curve, emphasising that the distinction is con-
tainment of the f axis (Fig. 8a and b comprise Fig. 1b drawn on the cylinder).

4. Closing remarks

Altering structures to exclude unwanted vibration frequencies has been analysed at the level of a parent
problem, in which a single (i.e. rank 1) brace is used to exclude a single frequency. Assessing a given brace
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has been demonstrated, but more interestingly, it has been shown that the problem is always solvable, with
algorithms for workable braces, both with and without detailed knowledge of the mode to be excluded.

A rank 1 brace is equivalent to a truss member in that both are substructures affecting a single gener-
alised freedom. Physically, a truss member can only stress a structure through two equal and opposite
forces acting along the same line (or only one force if the member connects to the ground). General rank 1
braces can be more complex than this. Even in the simple example of the cantilever, the physical sub-
structure corresponding to the brace of Eq. (26), used in producing Fig. 7, is far from obvious. Braces have
been constructed mathematically, but just how practical it would be to construct one of these physically is
another question.

The exclusion problem, with the initial form (K — w*M)u = 0, has been treated entirely in terms of
changes to K, and it was earlier noted that an alternative form equally allows changes to M. K is always
positive definite for a structure, a centrally important property for mode counting. M is likely to be so, too,
but not necessarily. If M is only semi-definite, mode counting needs closer scrutiny. Also, a rank 1 change
to M is hard to imagine. Mass is a scalar, and affects all directions equally. A point mass added to a position
has the same mass in the x, the y and the z directions. But it is still valid to see this as 3 rank 1 changes,
albeit simultaneous, and therefore able to be built from the parent problem.

Of course, changes could be made to both K and M, but these will only be rank 1 in the simplest cases.
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Appendix A. Bracing curves in the neighbourhood of a singular K(w)

Transformation to modal coordinates z = INJ’llNl, where U is the matrix of eigenvectors, gives diagonal
stiffness and mass matrices. With the columns of U scaled so that U"KU = I, the corresponding (diagonal)
mass matrix is QM = QTMQ, brace connections g transform to modal connections y = gU, and Eq. (9)
becomes - R

2 .2
§ yiwi

The connection to mode 7 is y,, and the bracing curve in the neighbourhood of w, (where K(w) is
singular) is different depending on whether or not this connection is zero.

(1) If the brace connects to the nth mode then y, # 0, 1/k becomes infinite at ® = w, and k is therefore 0,
confirming that the bracing curve passes through (0, ,). In the neighbourhood of w,, let ®* = ®? + ¢, when
Eq. (A1) is

&

~ —yzwz .
The bracing curve passes through (0, w,) with a finite slope

oo o,
ok 2

At the origin, £ = 0, the slope is positive, but the origin could be at any k, so,



R. Lawther | International Journal of Solids and Structures 38 (2001) 1523-1537 1537

ow

—>0 V&

Ok
showing that the bracing curves are monotonic increasing (unless they are the horizontal lines of the next
section).

(i1) Eq. (7) is more useful for considering y, = 0. With rank 1 bracing, and a transformation to modal
coordinates,

(147" - D™ )2 =0 (A2)

Both I and lN)M are diagonal, so at k£ = 0, the equations separate, as they must, because the modal co-
ordinates are derived at k = 0. In general, y7y is not diagonal, and the equations fail to separate for other %,
but if y, = 0 the nth equation separates from the others to give the eigenvector as z = e,, and the eigenvalue
from

1+ 0k — 0*/w? =0,

w=uw, Vk.

The bracing curve is a horizontal line. If a brace has no connection to a mode, it has no influence on it. The
relation,

0w iw,

ok 2

applies for all y, including y, = 0.
Returning to Eq. (A.1), which is now

2.2

'yiwl’
k=3 e

i#n L

when y, = 0, the nth mode w, has no effect on other bracing curves in its neighbourhood, or anywhere else.
Other curves may intersect its horizontal bracing curve, or asymptote to it. It can almost completely be
ignored. Almost, but not quite. It does act as a boundary for adjacent mode count regions (Section 2.3),
and so gives bounds on how far the brace can move the frequencies.
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